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Abstract: In this paper we present an efficient method to test the generalization abilities of 
subspace face recognition algorithms. The main motivation for this work is the lack of 
detailed analysis of this problem in current literature. Generalization ability of face 
recognition algorithm is the ability to recognize new individuals, which were not part of the 
training process. To illustrate our idea we used well-known recognition algorithms (PCA, 
ICA and LDA) and the FERET date set. Our results show that even these well-known 
algorithms have poor generalization abilities in some implementations. 
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1 INTRODUCTION 

Face recognition (Zhao et al., 2003), and biometrics in 
general (Jain et al., 2004), became one of the most 
important research questions in recent years. Pioneering 
days are way behind us and at this stage there is a 
significant need for deeper understanding and thorough 
analysis of existing algorithms. One property rarely 
addressed in evaluations is the generalization ability of an 
algorithm. There are several different meanings of the 
expression generalization ability currently in use. It is 

sometimes addressed as an ability to maintain a recognition 
rate when reducing the number of images in the training set. 
Another meaning would be, when considering the 
algorithms that use more than one image per class in 
training, the ability of an algorithm to maintain a 
recognition rate when the number of images per class used 
in training is reduced (Navarrete and Ruiz-del-Solar, 2002). 
For recognition of faces under various pose, generalization 
is the ability to recognize faces under poses that were not 
used in training (the same thing can be said for facial 
expressions as well). In our work we are focusing on the 
definition of generalization abilities as being the algorithm's 
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ability to recognize images that were not part of the training 
process. Since we have used well-known subspace face 
recognition algorithms and FERET (Phillips et al., 2000) 
database images and nomenclature to illustrate our idea, we 
can restate the definition as the ability to recognize 
individuals that were not part of the training set when 
computing the subspace. Being more precise, we investigate 
the effect that an overlap between images used as a training 
set (T) and images used in gallery (G) has on recognition 
rate. The generalization ability of a specific algorithm is 
better if recognition rate does not depend on overlap 
between T and G. Our results show that, out of 12 tested 
algorithms, 4 algorithms show significant differences at 
rank 1 recognition rates across various overlaps of T and G 
and thus have poor generalization abilities. 

The rest of this paper is organized as follows: Section 2 
gives a brief overview of algorithms, Section 3 describes 
experimental setup, Section 4 reports the results and Section 
5 concludes the paper. 

2 SUBSPACE FACE RECOGNITION 

We used three most popular subspace projection methods 
currently used in face recognition to illustrate our idea: 
PCA. Given an s-dimensional vector representation of 

each face in a training set of images, Principal Component 
Analysis (PCA) (Turk and Pentland, 1991) tends to find a t-
dimensional subspace whose basis vectors correspond to the 
maximum variance direction in the original image space. 
This new subspace is normally lower dimensional (t << s). 
If the image elements are considered as random variables, 
the PCA basis vectors are defined as eigenvectors of the 
scatter matrix. 
ICA. Independent Component Analysis (ICA) (Bartlett et 

al., 2002) minimizes both second-order and higher-order 
dependencies in the input data and attempts to find the basis 
along which the data (when projected onto them) are - 
statistically independent. Bartlett et al. provided two 
architectures of ICA for face recognition task: Architecture I 
– statistically independent basis images (ICA1 in our 
experiments), and Architecture II – factorial code 
representation (ICA2 in our experiments). 
LDA. Linear Discriminant Analysis (LDA) (Belhumeur et 

al., 1996) finds the vectors in the underlying space that best 
discriminate among classes. For all samples of all classes 
the between-class scatter matrix SB and the within-class 
scatter matrix SW are defined. The goal is to maximize SB 
while minimizing SW, in other words, maximize the ratio 
det|SB| / det|SW|. This ratio is maximized when the column 
vectors of the projection matrix are the eigenvectors of (SW

-1 
· SB). 
Metrics. We combine three well-known metrics with the 

described projection methods: L1, L2 and cosine distance 
(C in out experiments), thus yielding 12 different algorithms 
(projection-metric combinations). Nearest neighbour 
algorithm is used in the matching stage. 

3 EXPERIMENTAL SETUP 

We used standard FERET database. All images used in this 
experiment were first preprocessed using standard steps 
(spatial transformations, cropping, histogram adjusting to 
the range of values from 0 to 255). After this, all images 
were resized to be the size of 60 × 50 pixels. 

To obtain the information we need about recognition rates 
of projection-metric combinations (algorithms), we made 
five different test sets for five different percentages of 
overlap between T and G (0%, 25%, 50%, 75% and 100%). 
0% of overlap means that no image from G is part of T 
(actually, even no class from G is part of T in our case). 
100% of overlap means that all images from G were used in 
T as well. Probe set (P) is always a set of images different 
from T and G. 

FERET dataset consists of 3,816 images of 1,201 classes 
(different persons). We decided to use three images per 
class in training since that is the bear minimum for LDA to 
work properly. Thus, for our needs we have chosen two sets 
of images from the database: 1) images of those persons for 
which there are three images/class (SET_3) and 2) images 
of those persons for which there are four images/class 
(SET_4). 130 classes were randomly chosen in the SET_3 
and another 130 different classes in the SET_4. 
Consequently, there were 3 × 130 = 390 images in SET_3 
and 4 × 130 = 520 images in SET_4. We needed those two 
separate sets to achieve different overlaps. For example, the 
25% overlap was achieved by taking 98 classes (3 × 98 = 
294 images) from SET_3 and 32 classes (3 × 32 = 96 
images) from SET_4. Since we use three images per class 
for training, we always have one image per class from 
SET_4 never used in training, which is used in the probe 
set. After training, we take one image per class of those 3 × 
32 images from SET_4 that were used in T and one image 
from the rest of 98 classes from SET_4 and thus yield a 
gallery of 130 images (one image per class). This gives us 
the overlap between T and G of 25% (32/130 ≈ 0.25). From 
the explanation above it is obvious that, apart from the 
images that overlap in T and G, the rest of the training set 
consists of persons that are not used in the recognition stage. 
This way we actually test if an algorithm is tuned to a 
specific gallery or a specific set of people. From those 3 × 
130 = 390 images used in training, PCA derived 389 
meaningful eigenvectors. We decided to keep the top 40% 
of those, corresponding to largest eigenvalues. This way a 
new 160 dimensional subspace was derived (160/389 ≈ 
0.41). PCA based algorithms used this space for 
recognition. This space was also the input for ICA, which 
yielded a 160 dimensional space as well (both for ICA1 and 
ICA2). LDA, however, yielded only 129 dimensional space 
since it can produce a maximum of c – 1 basis vectors (c 
being the number of classes). All of those were kept to stay 
as close as possible to the dimensionality of PCA and ICA. 
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4 RESULTS 

Results of our experiments are shown in Table 1 and Figure 
1. Table 1 presents recognition rate results at rank 1 for 12 
tested algorithms at a given percentage of T and G overlap 
(0% – 100%). These results are also presented in Figure 1. 
Our hypothesis is: closer that graph in Figure 1 is to a 
horizontal line, the better the generalization abilities of a 
specific algorithm are. We can see that, although the 
difference in algorithm's performance is not extreme, it is 
noticeable. Before we can draw any further conclusions we 
need to determine if the algorithm's performance is really 
significantly different for different overlaps, because we can 
not make any strong conclusions from the visual inspection 
of the results presented in Figure 1. So, we decided to use 
hypothesis testing. Two testing techniques were used; a 
classic statistical z-test and a newly introduced McNemar's 
test (Yambor et al., 2002; Yang et al., 2005). The results are 
shown in Table 2. We decided to test two extreme results 
for a given algorithm (minimum and maximum number of 
images correctly recognized – Score in Table 2) and see if 
the difference between algorithm's performance at overlaps 
for which those results were achieved is significant (the S 
columns in Table 2). z-test will give us the answer to the 
question: is the difference significant considering the probe 
set as a whole? To perform this test we pose our hypotheses 
as follows: H1) Algorithm correctly recognizes images 
more often at overlap X then at overlap Y, and H0) There is 
no difference in how it performs at different overlaps. To be 
able to claim that H1 is true we need to establish that the 
probability of H0 (p(H0)) is very small. Variable z is 
calculated and p(H0) is determined. It can be seen that, 
given the standard 0.05 cutoff, the only significant 
difference in performance across various overlaps is 
recorded for ICA2+L1. This is also obvious from the plot in 
Figure 1. However, when we took a closer look at Figure 1 
we noticed that the difference in performance could (or 
should) be significant for some other algorithms as well. 
Thus, we decided to use a more discriminating McNemar's 
test. McNemar's test is a null hypothesis statistical test 
based on a Bernoulli model and it will give us more precise 
results because it takes full advantage of our experimental 
protocol (similar to Yambor et al., 2002). We redefined our 
hypotheses as: H1) when algorithm's performances at 
overlap X and overlap Y differ on a particular image, 
algorithm is more likely to correctly recognize it at overlap 
X, and H0) when algorithm's performances differ on a 
particular image at overlap X and overlap Y, algorithm is 
equally likely to correctly recognize it for both overlaps. For 
details on both tests please refer to (Yambor et al., 2002). 
p(H0) is again calculated and now we can see that four 
algorithms actually perform significantly different (the same 
0.05 cutoff is used). 

We can now safely conclude that ICA1+L2, ICA1+C, 
ICA2+L1 and LDA+L2 have worse generalization abilities 
than other tested algorithms since they perform significantly 
different when the percentage of overlap between T and G 
changes. If we now take a closer look at the values of p(H0) 

for the McNemar's test, we can see that p(H0) of four more 
algorithms (PCA+L2, ICA1+L1, LDA+L1 and LDA+C) is 
close to rejection since the values of p(H0) are of the same 
magnitude as the 0.05 cutoff. Moreover, algorithms for 
which the p(H0) value is large have very good 
generalization abilities, and they are: PCA+L1, PCA+C, 
ICA2+L2 and ICA2+C. 
 

Table 1. Recognition rates at rank 1 
 

 Percentage of T and G Overlap 
Alg. 0% 25% 50% 75% 100% 

PCA+L1 67.6% 69.2% 70.0% 67.6% 68.4% 
PCA+L2 59.2% 63.8% 65.3% 66.1% 66.1% 
PCA+C 61.5% 65.3% 66.9% 66.9% 66.9% 

ICA1+L1 58.4% 65.3% 65.3% 66.1% 66.9% 
ICA1+L2 59.2% 64.6% 65.3% 69.2% 67.6% 
ICA1+C 60.0% 65.3% 65.3% 68.4% 66.1% 
ICA2+L1 63.8% 56.9% 53.0% 49.2% 46.1% 
ICA2+L2 61.5% 67.6% 66.9% 66.9% 63.8% 
ICA2+C 73.8% 80.0% 77.6% 77.6% 80.0% 
LDA+L1 59.2% 62.3% 65.3% 63.8% 66.9% 
LDA+L2 58.4% 65.3% 66.1% 66.9% 67.6% 
LDA+C 61.5% 65.3% 66.9% 66.9% 68.4% 

 
 

Table 2. Results of hypotheses testing 
 

 Score z-test McNemar 
Alg. min max z p(H0) S p(H0) S 

PCA+L1 88 91 0.402 0.368 N 0.3679 N 
PCA+L2 77 86 1.154 0.205 N 0.0998 N 
PCA+C 80 87 0.906 0.265 N 0.1553 N 
ICA1+L1 76 87 1.411 0.148 N 0.0631 N 
ICA1+L2 77 90 1.682 0.097 N 0.0235 Y 
ICA1+C 78 89 1.423 0.145 N 0.0401 Y 
ICA2+L1 60 83 2.867 0.007 Y 0.0005 Y 
ICA2+L2 80 88 1.038 0.233 N 0.1465 N 
ICA2+C 96 104 1.178 0.199 N 0.1147 N 
LDA+L1 77 87 1.285 0.175 N 0.0717 N 
LDA+L2 76 88 1.542 0.121 N 0.0365 Y 
LDA+C 80 89 1.170 0.201 N 0.0939 N 

5 CONCLUSION AND FURTHER WORK 

We have presented an efficient approach to evaluating 
generalization abilities of subspace face recognition 
algorithms. To illustrate it we used well-known algorithms 
(PCA, ICA and LDA) and FERET data set. t was shown 
that, when submitted to this kind of testing, 4 out of 12 
tested algorithms gave significantly different recognition 
results at rank 1 for different T and G overlap percentages. 
They are namely: ICA1+L2, ICA1+C, ICA2+L1 and 
LDA+L2. Algorithms PCA+L1, PCA+C, ICA2+L2 and 
ICA2+C have shown very good generalization abilities, 
even when subject to this kind of rigorous testing. Visual 
inspection of the proposed graph is in some cases enough 
but we strongly recommend the use of statistical hypothesis 
tests as well. It was shown that classic statistical z-test 
confirms conclusions based on the visual inspection of the 
graphs, but a newly introduced McNemar's test is more 
discriminating and produces more precise results. 
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Figure 1. Plots of rank 1 recognition rates for a specific algorithm at a given percentage of T and G overlap 

 
We would like to encourage researchers to use similar 

tests of generalization abilities for their algorithms, when 
reporting results. 

As our further work we would like to use hypothesis 
testing across all ranks (whole CMS curve) to provide a 
more detailed analysis. Also, we presume that more precise 
results would be obtained by permuting a larger number of 
gallery and probe images once a subspace is defined (after 
the training step) and stronger conclusions could be drawn. 

ACKNOWLEDGMENTS 

Portions of the research in this paper use the Color FERET 
database of facial images collected under the FERET 
program. 

REFERENCES 

Bartlett, M.S., Movellan, J.R., Sejnowski, T.J. (2002) ‘Face 
Recognition by Independent Component Analysis’, IEEE 
Transactions on Neural Networks, Vol. 13, No. 6, pp. 1450-
1464, November. 

Belhumeur, P., Hespanha, J., Kriegman, D. (1996) ‘Eigenfaces vs. 
Fisherfaces: Recognition Using Class Specific Linear 
Projection’, Proceedings of the Fourth European Conference 
on Computer Vision, Vol. 1, Cambridge, UK, pp. 45-58. 

Jain, A.K., Ross, A., Prabhakar, S. (2004) ‘An Introduction to 
Biometric Recognition’, IEEE Transactions on CSVT, Vol. 14, 
No. 1, pp 4-19, January. 

Navarrete, P., Ruiz-del-Solar, J. (2002) ‘Analysis and Comparison 
of Eigenspace-Based Face Recognition Approaches’, 
International Journal of Pattern Recognition and Artificial 
Intelligence, Vol. 16, No. 7, pp. 817-830, November. 

Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J. (2000) ‘The 
FERET Evaluation Methodology for Face Recognition 
Algorithms’, IEEE Transactions on PAMI, Vol. 22, No. 10, 
pp. 1090-1104, October. 

Turk, M., Pentland, A. (1991) ‘Eigenfaces for Recognition’, 
Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86. 

Yambor, W., Draper, B., Beveridge, R. (2002) ‘Analyzing PCA-
Based Face Recognition Algorithms: Eigenvector Selection 
and Distance Measures’, Empirical Evaluation Methods in 
Computer Vision, H. Christensen and J. Phillips, eds., 
Singapore: World Scientific Press. 

Yang, J., Frangi, A.F., Yang, J., Zhang, D., Jin, Z. (2005) ‘KPCA 
Plus LDA: A Complete Kernel Fisher Discriminant 
Framework for Feature Extraction and Recognition’, IEEE 
Transactions on PAMI, Vol. 27, No. 2, pp. 230-244, February. 

Zhao, W., Chellappa, R., Phillips, J., Rosenfeld, A. (2003) ‘Face 
Recognition in Still and Video Images: A Literature Survey’, 
ACM Computing Surveys, Vol. 35, pp. 399-458, December. 

K. Delac, M. Grgic, S. Grgic 276


