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ABSTRACT Colorization is a process of converting grayscale images into visually acceptable color images.
The main goal is to convince the viewer of the authenticity of the result. Grayscale images that need to be
colorized are, in most cases, images with natural scenes. Over the last 20 years a wide range of colorization
methods has been developed – from algorithmically simple, yet time- and energy-consuming because
of unavoidable human intervention to more complicated, but simultaneously more automated methods.
Automatic conversion has become a challenging area that combines machine learning and deep learning
with art. This paper presents an overview and evaluation of grayscale image colorization methods and
techniques applied to natural images. The paper provides a classification of existing colorization methods,
explains the principles on which they are based, and highlights their advantages and disadvantages. Special
attention is paid to deep learning methods. Relevant methods are compared in terms of image quality and
processing time. Different metrics for color image quality assessment are used. Measuring the perceived
quality of a color image is challenging due to the complexity of the human visual system. Multiple metrics
used to evaluate colorization methods provide results by determining the difference between the predicted
color value and the ground truth, which in several cases is not in coherence with image plausibility. The
results show that user-guided neural networks are the most promising category for colorization because they
successfully combine human intervention and neural network automation.

INDEX TERMS Automatic methods, black-and-white image, colorfulness, colorization, deep learning
methods, example-based methods, grayscale image, image quality assessment, scribble-based methods,
user-guided methods.

I. INTRODUCTION
Historical black-and-white images are regarded as irreplace-
able, with exceptional artistic value. However, by looking
at them it is impossible to fully imagine the actual scene,
as color is a very important component of visual represen-
tation. The colorization of black-and-white images greatly
alters the perspective of the viewer. The time gap between
the past and the present fades away while making the scene
more conceivable. However, insight into the authentic colors
of early photographs is often unavailable, making satisfactory
reconstruction difficult. Nevertheless, the aim of colorization
is to deceive the viewer, to make him believe in the authen-
ticity of the colorized image, and not to reconstruct the color
accurately. Main applications of colorization include the
revival of historical black-and-white images, movie restora-
tion and coloring astronomy photographs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yin Zhang .

Color is a subjective response of the human visual system
to electromagnetic radiation of the visible spectrum with
wavelengths between 380 nm and 780 nm [1]. It is a property
of an object that can be described by hue, lightness, and
saturation. Understanding color perception involves physics,
physiology, and psychology. The perception of color depends
on vision, light and individual interpretation.

Colorization is essentially a process of assuming color
information where it is absent. Technically, it is a challenging
process of assigning three-dimensional RGB (Red, Green,
Blue) color information to each pixel with respect to inten-
sity of a grayscale image in a visually acceptable, plausible
way. To reduce the complexity of the task, a conversion to
a convenient luminance-chrominance color space is used in
the colorization process [2], [3]. YUV and CIELAB are color
spaces derived fromRGB. CIELAB is a perceptually uniform
color space obtained from RGB by nonlinear transforma-
tions [4]. The uniform changes of the components in CIELAB
match the uniform changes of human color experience. For
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this reason, observing two distinct colors in CIELAB can
be approximated by the Euclidean distance between the cor-
responding points in the color space. YUV is derived from
RGB by linear transformations [4], [5] and is not perceptually
uniform. Both YUV and CIELAB separate the luminance
component from the color information, allowing the exploita-
tion of intensity information and easier prediction of the
two remaining color channels. The Y component in YUV
represents the luminance, while U and V are the chrominance
components. In CIELAB, L is the luminance component,
while ab components carry the color information - a repre-
sents the green-red axis, while b represents the blue-yellow
axis. Different colorizationmethods work with different color
spaces. While some authors analyze the influence of various
color spaces in the colorization process [6], [7], many choose
the convenient one and develop the method with the selected
color space [8]–[11].

In most cases, there is no unique color that can be asso-
ciated with a particular gray object (e.g., balloons, clothing,
plastic objects, etc.). Therefore, the existence of many objects
in the world that appear with a great variety of colors makes
colorization an ill-posed problem (no unique solution exists).
This complexity provides constant interest in the research
community and makes colorization a compelling problem.

Early manual colorization techniques date back to the 19th

century [12].Well-known techniques from that period include
coloring a daguerreotype with a mixture of gum arabic and
pigments, as well as photochrom process [13]. In the 1970s,
following the impact of the digital revolution, colorization
was transferred to the computer domain. The term ‘‘col-
orization’’ was introduced by Wilson Markle to describe
the computer-assisted process of adding color to black-and-
white movies or TV programs [14]. It is known that these
colorization attempts resulted in low contrast, washed-out
and pale colors, but the reason behind it is unknown because
the details of the colorization procedures are proprietary.
In addition, significant human intervention was required in
the colorization process.

Technological developments have brought automated
machine learning, and especially deep learning techniques
into focus. These techniques have demonstrated their effec-
tiveness in various computer vision and image processing
applications [15]. In recent years, deep learning models
have shown remarkable success in many different application
domains (e.g., image classification, pedestrian detection and
tracking, face detection, handwritten character classification,
image super-resolution, photo adjustment, photo enhance-
ment, sketch simplification, style transfer, inpainting, image
blending, denoising, etc.) [9], [16] and thus promise more
innovative improvements in the near future. Both machine
learning and deep learning handle huge amounts of data
efficientlywhile unfolding hidden patterns and producing sat-
isfactory approximations of latent knowledge.Whilemachine
learning defines a set of rules in the data by extracting features
regarding some form of a priori knowledge, its narrower field,
deep learning, extracts regularities more independently using

a hierarchical level of artificial neural networks. In this way,
achieving exceptional colorization advantages has become
possible. Moreover, quality assessment of the colorization
results remains an active topic in the research community.

In this paper, a detailed review of the existing colorization
methods was conducted along with the quantitative eval-
uation of the results. The algorithms of Iizuka et al. [6],
Zhang et al. [8], Levin et al. [3], Su et al. [10],
Vitoria et al. [11] and Zhang et al. [9] (both automatic and
interactive versions) were analyzed and evaluated. Coloriza-
tion was performed on five distinctive photographs made by
the author. In these photographs, natural scenes with con-
siderable differences regarding color are shown. In addition
to the usual metrics for image quality evaluation, such as
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) [17], quaternion SSIM (QSSIM) [18], a new
perceptual similarity method, learned perceptual similarity
metric (LPIPS) [19] and patch-based contrast quality index
(PCQI) [20] were examined. Also, methods that try to mea-
sure the visual quality of the image, and not only fidelity to
the original, were used. Such measures are colorfulness [21],
underwater image quality measure (UIQM) [22], and under-
water image quality evaluation metric (UCIQE) [23].

The remainder of this paper is organized as follows.
In Section II, the classification of the methods has been
performed, with the emphasis on the advantages and disad-
vantages of each category. In Section III, colorization results
from described methods have been shown and evaluated. The
paper ends with the Conclusion.

II. COLORIZATION METHODS
Many computer science research fields are intertwined and
incorporated in the colorization process. Research papers
dealing with colorization differ significantly because of the
diversity of the proposed problem-solving approaches. The
imagination and variety of the approaches make the cate-
gorization of numerous colorization methods extremely dif-
ficult. Until recently, most existing papers have classified
the colorization methods considering the amount of user
involvement in problem solving and the way of retrieving
the required data [6], [24]–[30]. A rough division into the
scribble-based and the example-based methods was intro-
duced. The source (reference) images for the example-based
methods could be obtained manually or automatically. How-
ever, this manner of classification has become obsolete. Deep
learning techniques started showing remarkable advances
using incomparably larger number of source images than
the traditional example-based methods thereby indicating
the need for separation from the example-based category.
Therefore, contemporary papers introduce the use of deep
learning models with a large quantity of training data as
an additional criterion in the classification of colorization
methods [11], [31]. Consequently, colorization methods are
divided into scribble-based, example-based, and learning-
based (or deep learning) methods. Deep learning methods
attract the most attention. Anwar et al. [32] suggest dividing
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the deep learning methods into seven categories based on
the differences in domain type, neural network structure,
auxiliary input, and final output.

Still, some of the recent research continues to divide all
the existing methods into two categories [9], [33], [34], i.e.,
guidance (or user-guided) and no-guidance (or data-driven
automatic) regarding the amount of the user interaction as the
main division criterion. Controllability and interactivity are
considered crucial in image editing [9]. User involvement cre-
ates the opportunity for error correction. In this case, the user-
guided methods basically include the scribble-based and the
example-based methods, while the automatic category can
be equated with the deep learning methods. Even though
colorization became involved with machine learning with the
appearance of the example-based category, user intervention
remained necessary in providing a priori knowledge about
the problem or choosing suitable reference images. Some
contemporary methods may be classified in both user-guided
and deep learning categories [9], [10].

A. USER-GUIDED METHODS
1) SCRIBBLE-BASED METHODS
Scribble-based methods find the inspiration in early digital
colorization attempts [14]. The technicians used to choose
by hand the convenient colors, true or hypothetical, for
each object in an image. Manual image segmentation pro-
cedures, despite being complex and time-consuming, were
also applied. Each region was assigned a suitable color,
like in a coloring book. Art connoisseurs had objections
to colorization process because of the fear of the dis-
ruption of artistic expression which, along with financial
and time costs, were the main reasons for the stagnation
of colorization attempts. The increase in computer power
and the development of algorithms reencouraged interest
in colorization, especially in the computer vision research
community.

Nowadays, scribble-based methods require annotating the
grayscale image with marks of convenient colors, i.e., color
strokes, scribbles. They serve as a landmark for colorization.
The scribbles are user-made and placed upon certain areas of
the image. The color from the scribble is propagated across

the image to the borders specified by the intensity according
to an optimization framework.

The basic scribble-based method is presented in
Levin et al. [3]. Spatial continuity is exploited under the
assumption that neighboring pixels in the space-time domain
that have similar intensities should have similar colors.
By working in YUV color space, color is assumed to be a
linear function of intensity Y. The least squares optimization
is used. The scribbles are formed as linear constraints of the
optimization problem. Various subsequent, enhanced meth-
ods [24], [25] have taken over the optimization function of
this method, or its slightly revised version. An example of
the colorization result made by applying scribbles is shown
in Fig 1.

Advantages of the scribble-based methods include global-
ity – there is no need for explicit segmentation due to color
propagation limited by intensity values. Furthermore, there
is no need for searching an adequate, possibly unreachable
reference image. The user may allocate the scribbles strategi-
cally or even addmore scribbles if needed.Moreover, the user
has the potential of adjusting the assigned color to a more
desirable one.

On the other hand, scribble-based methods tend to be
tedious while demanding significant human effort consider-
ing the necessary time, experience, and sense of aesthetics.
Careful selection of palette colors is a prerequisite. Also,
a substantial number of scribbles is required to yield a reliable
result. In addition, color bleeding at image edges is highly
possible.

2) EXAMPLE-BASED METHODS
The difficulties of scribble-based methods may be alleviated
by selecting a similar reference color image for coloriza-
tion. The idea behind the procedure is based on transferring
color information from a color source image to the matching
regions of the target grayscale image. This procedure reduces
but does not exclude human activity in colorization process.

The improvement of Internet search engines and the
appearance of centralized and indexable image databases
enabled the transfer of the general ‘‘atmosphere’’ between
images, as in Welsh et al. [2]. The goal is to locate pixels

FIGURE 1. a) Original photograph, b) scribbles applied on the grayscale version of the photograph, c) colorization results.
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with corresponding luminance values in both target and ref-
erence images by means of neighboring pixels’ statistical
information and similar texture recognition. Although local
information is crucial for properly separating the boundaries
of objects within an image, the use of global information
highly increases the probability of accurate color assignment.

Since 2005, mentioned methods have been reviewed,
improved, combined and concatenated. Work on image pro-
cessing methods and machine learning techniques has been
intensified. Image segmentation is used for more efficient
color assignment in Irony et al. [24]. As shown in Fig. 2.,
a suitable feature space for region differentiation is con-
structed using k-nearest neighbors (k-NN) algorithm. The
classification of each pixel is done by voting both in
feature and image spaces leading to better spatial con-
sistency. The influence of shadows and light reflections,
as well as changing lighting conditions is considered in
Liu et al. [25]. The emphasis is switched to a global prob-
lem formulation with a statistical approach to its solving in
Charpiat et al. [26]. This way, the framework becomes more
robust to noise and local prediction errors. The probability
distribution of every possible color of a pixel is calculated,
thus resolving ambiguities more efficiently than previous
methods.

Since 2010, more attention has been paid to the qualitative
and quantitative comparison of colorization methods. Addi-
tionally, an increasing number of reference images is used
while searching for the corresponding color of segmented
image objects. Several local features (e.g., intensity, scale
invariant feature transform (SIFT), speeded-up robust fea-
tures (SURF), Gabor features) and their influence on color
transfer are explored in Chia et al. [27] and Gupta et al. [28].
For feature studies, groups of pixels like patches and super-
pixels are used while exploiting spatial consistency. The
grouping of segments assigned with similar color values is
carried out with k-means algorithm, gaining reliability of
color assessment. More complicated mathematical formula-
tions of loss functions with manually adjustable parameters
are used along with more advanced optimization methods in

Deshpande et al. [34], leading to better spatial consistency
and visually more appealing and convincing results.

There are several limitations of the example-based meth-
ods. The major limitation is the possible non-existence of
a single suitable reference image. Also, the selection of the
appropriate reference image is often done manually. The
quality of the result is highly dependent on the quality of
the reference image used. The target image and the reference
image need to implicate visual similarity. To ensure correct
color transfer, the objects in the scene are supposed to be sim-
ilar in both the target and reference images. Algorithm over-
fitting is risked by the usage of a single reference image (or
even a small number of images).

However, example-based methods are characterized by
simplicity and speed.

B. DEEP LEARNING METHODS
The expectation that one or more reference images might
contain sufficient color information for satisfactory coloriza-
tion results is usually not realistic. The evolution of deep
learning techniques has enabled training of an artificial neural
network with a large number of source images. For coloriza-
tion, it means automatically learning colors that naturally
correspond to real objects. Themethods yield better results by
adding more layers to the neural network and more images to
the training set. Deep neural networks were introduced to the
colorization problem by Cheng et al. [29]. Neural networks
automatically extract regularities within data by minimizing
the corresponding loss function in the training phase.

The neural network model automatically learns a mapping
function between the features of the pixels in a grayscale
image and the color values of the source images. In recent
times, the need for user intervention in colorization process
has been almost entirely excluded, even though not entirely
rejected. Although reducing the need for user effort is the
main advantage of deep learning methods, their main draw-
back is that numerous parameters need to be tuned to achieve
satisfactory results. Moreover, training a neural network with
a large training dataset requires a significant amount of time

FIGURE 2. Structure of Irony et al. example-based method [24].
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(days, even weeks). Additionally, the system uses dominant
colors learned from the dataset to generate results and is
therefore frequently slightly biased.

When dealing with images, basic deep neural networks
remove the spatial, two-dimensional form of an image. The
decomposition of an image into a one-dimensional vec-
tor of numbers occurs at the input, before forwarding to
subsequent layers. Convolutional neural networks (CNNs),
which are widely used in image processing, preserve the
spatial information, and are therefore also used in coloriza-
tion [6], [8], [16], [30], [35].

At the beginning of their development, deep learn-
ing colorization methods were considered as a modified
type of the example-based methods. They were charac-
terized as parametric methods that learn prediction func-
tions from a large dataset and define the problem as
regression onto continuous color space or classification of
quantized color values [8], [29], [35]–[37]. On the other
hand, traditional example-based methods were character-
ized as non-parametric methods transferring the color from
the source data onto the analogous regions of the target
image [2], [25], [26], [28], [34]. Regression methods use
the Euclidean distance between the predicted and the ground
truth color values as the loss function [6]. The perceptual
uniformity of CIELAB is modeled by the Euclidean distance
between the corresponding color points in color space. The
Euclidean loss function is very appreciated because it is easy
to understand and compute. However, believable results very
different from the ground truth are identified as inadequate
with the Euclidean loss function. Also, unfamiliar objects
are assigned desaturated reddish and brownish color values.
The recognition of the colorizationmultimodality remarkably
affects the result [8], [30]. The need for modifying the loss
function, in opposition to the widely accepted Euclidean
distance loss is noticed by Dahl, in [35]. The cross-entropy
loss is introduced for colorization by Zhang et al. [8], [9].
However, this simple categorization of deep learning meth-

ods became insufficient. With the emergence of deep gen-
erative models, which started producing vivid results with
colors dissimilar to the ground truth, the need for a new way
of method classification arose. Since 2017, deep generative
models, generative adversarial networks (GANs) and varia-
tional autoencoders (VAEs), have come into focus. The main
advantage of GANs is the fact that the competition between
the two neural networks, the generator, and the discrimina-
tor, creates the corresponding loss function while producing
vivid results [31]. Systems that avoid regression averaging
of possible colors are created by modifications of ordinary
architecture and loss function, while producing manifold of
realistic results [36], [38].

Evenmore adapted loss functions are introduced in [5], [7].
The novel Color-UNet++ architecture [5] uses a linear
combination of mean squared error (MSE), SSIM and
PSNR as the loss function, which proved suitable for
the regression problem. The method resolves the unnatu-
ral checkerboard artifacts of colorization through a careful

deconvolution design. A combination of adversarial loss,
cycle consistency loss and detail loss in CycleGAN [7] leads
to higher authenticity of the result. Skip connections used in
the method enable the improvement of feature representation.

Recently, the focus of researchers has diversified from
colorization of images with natural scenes towards the appli-
cation of colorization methods to other types of images, such
as radar [40] and infrared images [41], comic books, cartoons,
icons, fashion sketches and image synthesis from 2D and 3D
models [11], [36]. New applications lead to the extension
of colorization algorithms with additional techniques, e.g.,
language-based colorization of sketches [42], [43].

Recent extensive research [32] divides fast evolving deep
learning techniques ranging from early brute-force neural
networks to efficient GANs into seven categories: plain col-
orization neural networks, user-guided colorization neural
networks, domain-specific colorization neural networks, text-
based colorization neural networks, diverse colorization neu-
ral networks, multi-path colorization neural networks and
exemplar-based colorization neural networks. We have found
that there is overlap between some categories, so we propose
modification of this classification. Our categorization con-
sists of five categories and covers all deep learning coloriza-
tion methods previously grouped into seven categories. The
classification converged to five categories regarding neural
network structure and user interaction as the basic criteria:
• plain colorization neural networks – simple feedforward
CNNs,

• user-guided colorization neural networks – CNNs
requiring user interaction,

• diverse colorization neural networks – deep generative
models (GANs and VAEs) which generate results dif-
ferent from the ground truth,

• multi-path colorization neural networks – parallel paths
of CNNs for analyzing different features,

• exemplar-based neural networks – CNNs which are
given an example color image at the input along with
the grayscale image.

The domain-specific colorization neural networks category
from [32] is intended for colorization of specific type of
images (e.g., radar images, infrared images). Regarding only
the architecture used for the colorization process, they could
be categorized into any of the five categories. The selected
category depends on the neural network structure used for that
specific problem.

The text-based colorization neural networks from [32]
could be considered as user-guided colorization neural net-
works because user assistance in a form of providing tex-
tual input is needed in the colorization process. They were
not analyzed in this paper as their successful application
requires additional research on the non-image-processing-
related problems such as text domain analysis, semantic
ambiguity, and language bias.

Image colorization experiments were performed with
methods representing each of the five categories, and the
results were compared.
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1) PLAIN COLORIZATION NEURAL NETWORKS
Plain colorization neural networks generally consist of a
straightforward architecture: stacked layers only or naive
skip connections [8], [29]. The most well-known fully auto-
mated colorization method proposed by Zhang et al. [8]
belongs to this category. The network architecture shown
in Fig. 3 consists of multiple convolutional blocks with two
or three convolutional layers with rectified linear unit (ReLu)
activation function. Down-sampling and up-sampling are
conducted between the blocks. The method is based on the
multinomial classification of pixels according to color and
the class rebalancing for increasing diversity of resulting
colors. The distribution of possible colors is predicted for
each pixel. The classification of pixels is determined by
probabilities of belonging to one of 313 segments of the
discretized and quantized ab-plane of CIELAB color space.
The major contribution of the method is the observation
that in natural images the number of pixels with desatu-
rated color values is orders of magnitude higher than the
number of pixels with saturated values. Without taking this
into account, the cross-entropy loss function is dominated by
desaturated ab-values. Hence, the adjustment of the loss func-
tion is performed based on the distribution of saturated and
desaturated pixels. The loss is reweighted during the training
phase.

Although producing a broad range of convincing results,
simple neural networks might experience difficulties with
accurately capturing the color characteristics for many dif-
ferent scenes with distinct color styles [44]. The results
often contain improper colors and noticeable artifacts [9].
An ensemble of neural networks is proposed to achieve better
results than using one network alone.

Plain neural network architecture is also used for producing
colorization results for images from different domains (e.g.,
radar) [40] and different modalities (e.g., infrared) [41].

2) USER-GUIDED COLORIZATION NEURAL NETWORKS
User-guided colorization neural networks require user
involvement and are built upon deep learning foundations.
Therefore, they could be categorized as both user-guided and
deep learning methods simultaneously. Although the user

contribution is relevant, the prevailing categorization includes
them into deep learning methods because of prevailing usage
of deep neural networks. The user involvement in a form of
real-time or delayed distribution of sketches, strikes, points
or scribbles [9], [37], or a textual phrase [42], [43] is required
at the neural network input.

The first subcategory of user-guided colorization neural
networks could be considered as an enhancement of the
scribble-based methods because of the color hints usage.
Point inputs upon the grayscale image are required, in con-
trast with the classic scribble-based approach which demands
strokes of color. The architecture of the method from
Zhang et al. [9] is shown in Fig 4. Two variants of the user
interaction colorization neural networks are trained – the local
hints and the global hints network. The local hints network
processes user points and predicts the color distribution.
The global hints network incorporates global statistics into
the main framework. The hypercolumn approach from [30]
is used by concatenating features from multiple layers of
the main branch and learning a two-layer classifier on top.
Necessary changes in resolution are conducted by down-
sampling and up-sampling between convolutional layers. The
colorization is performed in CIELAB color space. The main
framework generates the result in a single feed-forward pass,
enabling real-time usage. Before giving the user a chance of
arbitrary marking the target image, a result of training with a
million images with simulated user inputs is obtained.

The second subcategory of user-guided colorization neu-
ral networks uses textual input for colorization manage-
ment. This colorization subcategory requires specific textual
phrases from a limited dictionary, semantic analysis, and lan-
guage processing. The association of language-based instruc-
tions and scene regions allows reusing the same instructions
for consistent colorization of different images involving sim-
ilar objects. The interactivity of this subcategory makes it
appropriate for literacy education for children [43].

3) DIVERSE COLORIZATION NEURAL NETWORKS
Any architecture which generates more than one result-
ing image with colors not necessarily the same as in the
original can be categorized as a diverse colorization neural

FIGURE 3. Architecture of Zhang et al. [8] plain colorization neural network.
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FIGURE 4. User-guided colorization neural network architecture from Zhang et al. [9].

network [11], [36], [38], [39]. The term ‘‘diverse’’ primarily
refers to colorization results which differ from the ground
truth and at the same time are characterized as realistic. Diver-
sity of results is usually accomplished by GANs and VAEs.
TheGAN architecture designed byVitoria et al. [11] is shown
in Fig. 5. The two-part generator produces color information
and classifies semantic content. The discriminator learns to
differentiate between real and generated data. CIELAB color
space is used for the colorization process. A combination
of color, perceptual and semantic information leads to an
innovative three-term loss function. Training the model with
a fully self-supervised strategy (semantic clues coupled with
an adversarial approach) yields to high quality, vivid results.

4) MULTI-PATH COLORIZATION NEURAL NETWORKS
Learning features from different paths is the main reason
for classifying a method into the multi-path colorization
neural networks category [6], [30], [33]. Colorization with
capsule neural networks belongs to this category [33]. How-
ever, capsule networks have not been tested on large datasets
like ImageNet [45], leading to doubt about their ability to
perform better than existing approaches [46]. A frequently
adverted CNN regression colorization method was developed
by Iizuka et al. [6]. After comparing the results of using
different color spaces (RGB, YUV, CIELAB) within the
algorithm, the authors concluded that there was no signif-
icant difference in perceptual quality among color spaces.

FIGURE 5. Architecture of diverse colorization neural network ChromaGAN by Vitoria et al. [11].
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FIGURE 6. Architecture of multi-path colorization neural network from Iizuka et al. [6].

The importance of global features (scene semantics) is
emphasized, leading to reduction of solution ambiguities.
Nevertheless, local information is not diminished. The net-
work model consists of four main components: a low-level
features network, a mid-level features network, a global fea-
tures network and a colorization network as shown in Fig. 6.
Local and global information are fused together enabling
total automaticity. The model is trained end-to-end on a large
dataset for scene recognition with a joint colorization and
classification loss. The classification of the scene into one
of the predetermined categories significantly improves the
result.

Previously mentioned method from Zhang et al. [9] can
also work without user intervention. Before providing points

of color, the colorization result deprived of user intervention
is given at the output. Because of the division and later fusion
of low-level user inputs with high-level semantic information,
this automatic version of the method is classified in the multi-
path category.

5) EXEMPLAR-BASED COLORIZATION NEURAL NETWORKS
Exemplar-based colorization neural networks could be con-
sidered as an extension of the example-based methods cate-
gory. One or more reference images are used for transferring
the color to the target image. In a new method for more suc-
cessful colorization of images with multiple objects proposed
by Su et al. [10], object detection is initially used, as shown
in Fig. 7. CIELAB color space is used for colorization. In the

FIGURE 7. Architecture of exemplar-based colorization neural network from Su et al. [10].
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absence of a clear figure-ground separation, when learning
on an entire image, models cannot effectively locate and
learn meaningful object-level semantics. Learning to colorize
instances is a substantially easier task than learning on an
entire image because it disregards complex background clut-
ter. Every instance is forwarded to two different colorization
neural networks. Fusion of the features is performed for the
output. This way, better feature map is obtained leading to
better results. The networks are initialized with the pretrained
weights as in [9]. The stated fact is just one of the examples
of the entanglement of the existing methods.

6) COMMONALITIES OF THE DEEP LEARNING METHODS
Although differing in many aspects regarding architecture
design, construction of loss functions, variety of learning
strategies, etc., all the main deep learning methods share a
number of commonalities which are used for creating new,
upgraded methods. Neural network topology inevitably con-
sists of a different number of convolutional layers (blocks).
A stack of convolutional layers with small kernels brings
significant benefit in the accuracy compared to the singu-
lar convolutional layers with big kernels [41]. However, the
number of layers and their organization are distinctive. Con-
volutional layers are frequently followed by batch normal-
ization (for reducing the effect of the internal covariate shift
(ICS) [33]) and a non-linear activation function. Striding or
pooling layers are used (e.g., for dimensionality reduction).
Dropout layers are used for preventing overfitting. These
layers do not have parameters - they randomly set previ-
ous layer’s activations to zero with a probability equal to
dropout ratio hyperparameter. Softmax is often used as an
activation function of the output of the neural network’s
layers. However, tanh is often used at the end of the neural
network [47]. Common up-sampling techniques are used
for increasing image size between the layers, e.g., bilin-
ear [9] and nearest-neighbor [6]. Many methods use VGG-
16 [11], [16], [30] or VGG-19 [33] architectures as feature
extractors. Local and global features are often combined with
a fusion layer [6], [10], [48]. Local features are based on
small pixel areas while a global model considers the whole
image for better understanding of the image content. Also,
many methods find the Euclidean loss as inappropriate for
the colorization task [8], [9], [11], [16], [26], [30]. Nei-
ther the Euclidean nor the cross-entropy loss are suitable to
express the human subjective opinion about the acceptability
or rationality of the predicted colors. The Huber loss func-
tion has been recently used because of lower sensitivity to
outliers [49].

The datasets used for training the colorization meth-
ods vary substantially. They are usually intended for
other image processing tasks: detection, classification,
segmentation, etc. [32]. The most prominent publicly
available datasets are CIFAR datasets [50], ImageNet
ILSVRC2012 [51] and Places [52]. Most notable coloriza-
tion methods [6], [8], [11], [33] have been trained on Ima-
geNet ILSVRC2012. The existence of dissimilar datasets

increases the amount of training material, but it also cre-
ates setbacks. For example, if using semantic labels, incon-
sistency in categories between different datasets leads to
incompatibility [44].

Also, ResNet architecture with skip connections is fre-
quent in colorization neural network construction [32]. Very
deep CNNs are difficult to train because of vanishing and
exploding gradients. Skip connections allow to take activation
from one layer and feed it to another, much deeper layer.
Colorization performance is superior if deeper CNNs are
used [41].

Many authors agree that postprocessing is necessary to
remove the incoherence and recover the lost details in an
image [41]. Joint bilateral filtering is used in [29], [44].

III. EVALUATION OF COLORIZATION METHODS
A. SIGNIFICANCE OF TESTING COLORIZATION
ALGORITHMS
Every algorithm has an expected behavior and a task to fulfill.
Testing of image processing algorithms can be defined as a
process of determining whether a particular algorithm has
satisfied its specifications relating to certain criteria, such
as accuracy, robustness, adaptability, sensitivity, reliability
and efficiency [53]. More precisely, performance evaluation
shows to what extent the behavior of an algorithm matches
the required properties. The goals that should be achieved by
some algorithm have to be well defined. Finding an appropri-
ate metric which correlates with the subjective judgement is a
big limitation in image processing. Visual patterns are high-
dimensional and the apprehension of visual similarity (and
quality) is often subjective [19]. Moreover, the performance
of algorithm testing depends on various factors: the algorithm
itself, the nature of images, the parameters and the metric
used for evaluation. Because of the image processing algo-
rithm diversity, the selection of a proper evaluation method is
highly dependent on the task [53], [54].

Time complexity, computational complexity and the ways
of hardware usage are indispensable indicators of coloriza-
tion method divergence. Nevertheless, a direct comparison
of certain methods is difficult to perform mainly because
of the great diversity of the main ideas in problem-solving
approaches. Although many methods share similarities in
the approach, especially in deep learning category, some are
trained with different datasets under different terms, mainly
regarding training time. Also, finding the adequate manner of
assessing the result of colorization remains an open issue.

The main goal of a colorization result is a convinced
viewer. However, methodical subjective quality assessment
demands for a group of volunteers who rate the visual quality
of an image [54]. Viewers can be influenced by environ-
mental conditions and mood oscillations, often making the
results biased, far from objective. Also, the process is slow,
expensive, and impractical [18], [23]. This is the main rea-
son for turning to quantitative evaluation. Objective metrics
have been designed to quantify image quality efficiently and
automatically in correlation with subjective judgement [55].
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However, there is no single quantitative metric which cor-
relates completely with the image quality as perceived by
the human visual system [16], [19], [53], i.e., the human
perception of naturalness and detail [56].

Even though many characteristics of the human visual
system are still unknown, it is acknowledged that it is much
more sensitive to light intensity changes than to chrominance
changes andmore sensitive to contrast than tomean shift [18].
This is the main reason for the extensive use and devel-
opment of the grayscale image quality metrics. Most color
image quality metrics are modified grayscale image quality
metrics [23]. Considering color information, visual state-of-
the art quality metrics can be divided into three categories:
grayscale, chrominance, and combined quality metrics [18].
In colorization, the original image and the image obtained
by the process share identical luminance component. Con-
sequently, the usage of chrominance quality metrics is neces-
sary for the colorization evaluation.

B. METRICS USED FOR COLORIZATION EVALUATION
PSNR and SSIM are metrics which evaluate the difference
between the original image and a changed one [17]. PSNR is
measured in decibels. A higher PSNR value indicates a higher
reconstruction quality. SSIM ranges from 0 to 1. The value
of 1 indicates identity of the original and reconstructed image.
Values above 0.97 are gratifying. It is important to emphasize
that measuring PSNR and SSIM between color images in the
process of colorization is unsuitable because they assess the
luminance component only. Even though many colorization
methods use CIELAB and YUV color spaces, the obtained
results are transformed to RGB color space because RGB
representation of images is a standard way to display colors
on monitors and other devices. For this reason, PSNR and
SSIM between the R, G and B components of the original
and the colorized image can be used as a performance metric
for colorization. Separate consideration of the R, G and B
components does not provide a good insight into the overall
quality of the color image. In calculation of Color PSNR
(CPSNR), MSE values for R, G and B components are
obtained. CPSNR is then calculated using the averaged MSE
across components. Also, converting from RGB to YUV
color space and measuring PSNR and SSIM of the U and V
channels can be accomplished. YUV minimizes the correla-
tion between the three coordinate axes (R, G and B) of the
color space. For YUV color space the same considerations
apply as for RGB color space. Consideration of the U and
V channels provides a good insight into the overall quality
of the color image. Overall, PSNR and SSIM are simple
functions that cannot take into account fine distinctions in
human perception [19].

Various metrics for the comparison of color images have
been proposed over the years. Some of them are compara-
tive and demand a reference image, while others require no
reference. Most of these metrics are related to the difference
between colors. However, no metric for measuring color
plausibility currently exists. Nevertheless, in the examples in

which color is fixed by natural laws (blue sky, green grass,
etc.), numerical evaluation of color difference may have a
reasonable value.

QSSIM [18] is a metric developed because it was noticed
that the simple approach of expanding the grayscale quality
metric into chrominance quality metric through linear combi-
nation of the separate results of each color channel (the dot-
product approach) was insufficient. When performing a dot
product between two vectors, only a part of the energy differ-
ence between the vectors is measured. A vector correlation
is composed of two parts, the scalar correlation and the cross
correlation (vector product), which form the color correlation.
Quaternion image processing treats each color pixel as a
single quaternion number. Quaternions are a generalization
of complex numbers. A quaternion q ∈ H is composed of a
real part and three imaginary parts:

q = s+ r · i+ g · j+ b · k, (1)

where s, r, g, b ∈ R and i, j and k are its basic elements. The
following rule has to be considered:

i2 = j2 = k2 = ijk = −1. (2)

Important definitions cover the quaternion conjugate:

q̄ = s− ri− gj− bk, (3)

and the quaternion modulus:

|q| =
√
s2 + r2 + g2 + b2 =

√
qq∗. (4)

The parameter s is considered the quaternion scalar part.
When s is zero, the quaternion is called a pure quaternion.
The three RGB channels of the color image are encoded
in the three imaginary parts of the quaternion [18], [57]
thereby forming pure quaternions. QSSIM is not the only
quaternion color image quality assessment metric developed.
It was noticed that a quaternion matrix has a unique singular
value feature vector [57]. The matrix is a representation of
a color image; therefore, the singular value feature vector is
unique for every color image. The similarity of two vectors
can be measured by the angle between them.

S-CIELAB is a spatial extension of the CIELAB color met-
ric useful for measuring color reproduction errors in digital
images [58]. To compute the error, digital color images are
spatially filtered (to simulate the spatial blur of the human
visual system) and then converted to the CIELAB represen-
tation. The standard CIELAB delta E metric is suitable for
use on large uniform color targets, but not on images, because
color sensitivity changes as a function of spatial pattern. The
sensitivity to color differences also depends on the color of
the background or the adaptation state of the eye, which
can be changed by ambient illumination [58], [59]. However,
in colorizationmany convincing solutions can be created even
with colors very different from the ground truth, whereas this
metric is a color fidelity metric.

PCQI [20] is a metric developed for evaluating the quality
of images with contrast modifications considering a refer-
ence image. The metric is a product of three independent
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components: mean intensity, signal strength and signal struc-
ture. The three components uniquely describe image patches.
While the distortions in contrast are observed in mean inten-
sity and signal strength values, structure can always be deter-
mined regardless of the imperfect contrast. In [20], it is
demonstrated that the PCQI metric is well correlated with
subjective evaluation of image quality. Anwar et al. [32] show
that this metric can be used for the evaluation of colorized
images.

When designing a color quality metric, it is believed that
two main factors need to be considered: color cast and col-
orfulness [21]. Colorfulness metric evaluates the perceptual
impact of processing on image quality. The resulting image
is considered different from the original, but not necessar-
ily worse. The quality of the resulting image is measured,
not fidelity to the original [21] since no reference image is
needed. Because the main goal of colorization is a persuaded
viewer and not fidelity to the original, the goal of this metric
comes closest to the colorization goal. For computing col-
orfulness, a study of the distribution of image pixels in the
CIELAB color space is conducted, indicating that colorful-
ness can be represented as a combination of image statistics.
More precisely, it can be defined as a linear combination of
the standard deviation σ and the mean value µ of the oppo-
nent blue-yellow and red-green color spaces. For the sake of
computational efficiency, a simple version of the opponent
color space is employed:

rg = R− G, (5)

yb =
1
2
(R+ G)− B. (6)

Colorfulness metric can then be defined as:

M̂ = σrgyb + 0.3 · µrgyb, (7)

σrgyb :=

√
σ 2
rg + σ

2
yb, (8)

µrgyb :=

√
µ2
rg + µ

2
yb. (9)

UIQM [22] is primarily constructed for assessing several
aspects of underwater image degradation. It does not require a
reference image. UIQM is a linear combination of three com-
ponents: underwater image colorfulness measure (UICM),
underwater image sharpness measure (UISM) and underwa-
ter image contrast measure (UIConM) that are inspired by
the properties of human visual system. UICM measures the
color cast. UISM specifies the clarity of edges and details.
UIConM evaluates the contrast of underwater images. In [32],
it is shown that UIQM can be used to evaluate colorization
results of natural images.

UCIQE is a linear combination of CIELAB chroma, satu-
ration and contrast [23]. It quantifies the non-uniform color
cast, blur and low contrast of underwater images primarily.
The tests conducted in the original paper verify the coher-
ence between the quality of the results and the subjective
perspective.

LPIPS is another metric used for the evaluation of the
colorization result [19]. The features of the VGG neural
network trained on ImageNet [45] have been revealed as an
encouraging training loss function for image synthesis. Neu-
ral networks trained to solve challenging visual prediction
and modeling tasks end up learning features that correlate
well with perceptual judgments. The study of the metric has
been conducted on the dataset containing many distortion
types and real algorithm outputs, including colorization. Col-
orization methods generally do not show much structural
variation but are prone to the effects of color bleeding and
color variation.

C. RESULTS AND DISCUSSION
Visual and quantitative comparison of several state-of-the-
art colorization methods with various architectures and
levels of user assistance is described in the following para-
graphs. The tested algorithms include user-guided scribble-
based method from Levin et al. [3] and various deep
learning methods: multi-path colorization neural network
from Iizuka et al. [6], plain colorization neural network from
Zhang et al. [8], exemplar-based colorization neural network
from Su et al. [10], diverse colorization neural network from
Vitoria et al. [11] and Zhang et al. [9] (both the interactive
version belonging to user-guided colorization neural network
and the automatic version belonging to the multi-path col-
orization neural network). The experiments were conducted
with the code obtained from the webpages related to the
papers. All deep learning methods were trained on ImageNet
dataset [45]. For method comparison, several photographs
from the author’s collection were used. These photographs
represent natural images with various scenes. The images
were resized from the original resolution of 4160 × 3120
pixels to 320 × 240 pixels to reduce the processing time.
Five images were carefully selected for evaluation because
they have different features considering color, which is veri-
fied by the vectorscope analysis in Fig. 8. The vectorscope
shows range of colors in each image. Vectorscope screens
originate from the influence of the U and V components
of YUV representation of the chosen images. Each dot in
the vectorscope gives information about chrominance. This
information contains two components: the hue (the specific
color) and the saturation (the strength of the hue) of the colors
in the test image. The associated vectorscopes were gener-
ated with ImageVectorscopeAnalyzer [60]. The colorization
results are highly dependent on the image content.

Another reason for choosing these test images was the
fact that the scenes that they represent are very distinctive –
nature in daylight, differently colored typical objects, build-
ings, differently colored atypical objects at night and human
faces. Themajority of the distinctive colorization effects were
described with the selected examples. A larger number of test
images and the averaging of the metrics’ results would not
contribute to the quality of the evaluation presented in this
paper and to the improvement of the comparison between
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FIGURE 8. Test photograph: a) the river, b) vectorscope of river photograph, c) the watches,
d) vectorscope of watches photograph, e) the buildings, f) vectorscope of buildings
photograph, g) the balloons, h) vectorscope of balloons photograph, i) the people,
j) vectorscope of people photograph.
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the methods. Analysis on large quantity of images would
not give the real insight of how the colorization methods
affect the particular images with different content and color
ranges. Also, it is impractical to colorize a large number of
images with methods that require user intervention. Each of
the selected images could be considered as a representative
of a different group of natural images.

The original photographs, their grayscale versions and the
colorization method comparison are shown in Figs. 9-13.
In Table 1 to Table 10 the best result according to each metric
is written in bold.

In Fig. 9, the river example, colorized results from the
interactive version of Zhang et al. [9], Su et al. [10],
Vitoria et al. [11] and the automatic version of Zhang et al. [9]
can be visually estimated as highly credible, even more than
the original. Also, the plain colorization neural network of
Zhang et al. [8] gives satisfying result. Table 1 shows that

mean QSSIM (MQSSIM) values do not correlate with this
observation. The highest values, which imply better qual-
ity, are assigned to the automatic Zhang et al. [9], and
Iizuka et al. [6]. The latter is the least convincing along with
the result of the Levin et al. method [3], obtained from an
unskillfully marked grayscale image. However, theMQSSIM
results are all placed close together except for the results of
Su et al. [10].

It is accounted to the fact that the sharpness of these images
is reduced, therefore producing color bleeding. Similar obser-
vations can be noticed with mean SSIM values. A higher
value of colorfulness indicates more visual appeal. Colorful-
ness of the result of the interactive version of Zhang et al. [9]
is higher than of the original image. However, high value of
colorfulness of the result from Levin et al. [3] does not indi-
cate visual appeal. The UCIQE values mainly follow the per-
ceptual observations. A larger UCIQE value indicates better

FIGURE 9. a) Original river photograph, b) grayscale version of the river photograph, c) result of Iizuka et al. [6], d) result of Zhang et al. [8], e) result of
Levin et al. [3], f) result of Su et al. [10], g) result of Vitoria et al. [11], h) result of automatic Zhang et al. [9], i) result of interactive Zhang et al. [9].
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TABLE 1. Image quality evaluation metrics for the river photograph.

TABLE 2. PSNR and SSIM of the U and V components of the YUV river photograph.

quality. LPIPS values also coincide with human perception
(smaller values suggest better quality), except for Su et al.
results [10]. Higher UIQM values indicate better image qual-
ity. The UIQM values give an advantage to the interactive
Zhang et al. [9] and Levin et al. [3], just like colorfulness. It is
because one of the components of UIQM is colorfulness mea-
sure, UICM. PCQI prioritizes the automatic Zhang et al. [9]
method with all test images except for the river example,
where the highest value is obtained by the Iizuka et al. [6]
result. Table 2 shows the PSNR and SSIM values of the U and
V components and their averaged UV_PSNR and UV_SSIM
values for the river image. PSNR and SSIM of the Y com-
ponent have not been evaluated because the original and the
colorized image share that component. TheUV_PSNRvalues
of colorization results of all methods are located within a
narrow range except for the result of Levin et al. [3], which
is the least convincing. The highest UV_SSIM values are
acquired with the results of Iizuka et al. [6], Vitoria et al. [11]
and the automatic version of Zhang et al. [9]. The lowest
value is acquired with the result of Levin et al. [3] and that
corresponds to the human perception. The evaluated metrics
have declared the last three colorized images as the most
appealing: Vitoria et al. [11] with Zhang et al. [9] (both
automatic and interactive) together with subjectively less
appealing Iizuka et al. [6].
In Fig. 10, an example of colorful watches is shown.

The most convincing results are generated with the interac-
tive Zhang et al. [9] and Levin et al. [3] methods because
ambiguities can be skillfully resolved by user suggestions.
Other deep learning methods indicate desaturation. In this
situation, Table 3 shows that MQSSIM values are not distinc-
tive. Although colorfulness is the highest for the mentioned
convincing results, many desaturated results also have high
values. CPSNR and mean SSIM categorize the desaturated
results of Iizuka et al. [6] and automatic Zhang et al. [9]
as the best proving themselves unfitting for the task. PCQI
inappropriately gives advantage to the results of automatic

Zhang et al. [9] and Zhang et al. [8]. LPIPS coincides with
the subjective observations. The UCIQE and UIQM metrics
consider the user-guided methods better than the original,
possibly indicating the fitness of the metrics for evaluat-
ing credibility of abstract scenes. In Table 4, UV_PSNR
and UV_SSIM appoint the result of Iizuka et al. [6] as
the best. Closely behind stands the automatic result of
Zhang et al. [9].

In Fig. 11, the buildings obtained by the automatic
Zhang et al. [9], Su et al. [10], Zhang et al. [8] and
Iizuka et al. [6] methods are considered the most believable.
Table 5 and Table 6 show that CPSNR, PCQI, UV_PSNR and
UV_SSIM mostly match the observations.

In the example of balloons, Fig. 12, the result obtained
by the interactive Zhang et al. method [9] appears more
authentic than the original. UIQM and colorfulness from
Table 7 confirm it. However, the result from Zhang et al. [8]
is also labeled as more colorful than the original and that
is not the case. Color stains make this image unconvincing.
The results from Levin et al. [3] and Vitoria et al. [11] seem
more convincing than the others. The biggest problem in
the evaluation is the fundamental uncertainty of the possible
balloons’ colors. The results of the metrics in Table 7 and
Table 8 reveal the automatic Zhang et al. [9] as the best. This
fact does not overlap with the user perception because the
colors of the balloons are not vivid.

In Fig. 13, many artifacts can be noticed. In the result
of Levin et al. [3], the insufficient number of cautiously
located scribbles makes the result utterly unbelievable. How-
ever, colorfulness, UIQM andUCIQE indicate the dominance
of this method because of the overly saturated colors. The
irregularities in the coloring of human faces can be seen in
the result of Vitoria et al. [11], i.e., the skin tone is overly
saturated. The result of Su et al. [10] wrongly assigns gray
tone to the hair of a person. The results of Zhang et al. [8], [9]
and Iizuka et al. [6] appear acceptable to the human eye. The
averaging of all possible colors of clothes can be noticed in all
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FIGURE 10. a) Original watches photograph, b) grayscale version of the watches photograph, c) result of Iizuka et al. [6], d) result of Zhang et al. [8],
e) result of Levin et al. [3], f) result of Su et al. [10], g) result of Vitoria et al. [11], h) result of automatic Zhang et al. [9], i) result of interactive
Zhang et al. [9].

TABLE 3. Image quality evaluation metrics for the watches photograph.

the examples that do not require the user intervention. Despite
that, images with appropriately colored human characteristics
(skin and hair) are considered satisfactory. Table 9 shows
that LPIPS and CPSNR consider the user-manipulated result
from [9] as the best, which matches the visual impression.
Moreover, UV_PSNR from Table 10 confirms that inference.

The time complexity of the core of the coloriza-
tion process of every automatic method was measured.

The configuration used for colorization process was a PC
based on AMD Ryzen 7 4800H processor and NVIDIA
GeForce GTX 1650 GPU. The numbers in Table 11 represent
seconds. More precisely, the beginning of the measurement is
set when the preprocessed image is forwarded to the model
and the end is set just after the colorization is done. The
postprocessing step is not included in the measurement. The
time spent on colorizing images with user-guided methods,
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TABLE 4. PSNR and SSIM of the U and V components of the YUV watches photograph.

FIGURE 11. a) Original buildings photograph, b) grayscale version of the buildings photograph, c) result of Iizuka et al. [6], d) result of Zhang et al. [8],
e) result of Levin et al. [3], f) result of Su et al. [10], g) result of Vitoria et al. [11], h) result of automatic Zhang et al. [9], i) result of interactive
Zhang et al. [9].

TABLE 5. Image quality evaluation metrics for the buildings photograph.
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FIGURE 12. a) Original balloons photograph, b) grayscale version of the balloons photograph, c) result of Iizuka et al. [6], d) result of Zhang et al. [8],
e) result of Levin et al. [3], f) result of Su et al. [10], g) result of Vitoria et al. [11], h) result of automatic Zhang et al. [9], i) result of interactive
Zhang et al. [9].

TABLE 6. PSNR and SSIM of the U and V components of the YUV buildings photograph.

TABLE 7. Image quality evaluation metrics for the balloons photograph.
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FIGURE 13. a) Original people photograph, b) grayscale version of the people photograph, c) result of Iizuka et al. [6], d) result of Zhang et al. [8],
e) result of Levin et al. [3], f) result of Su et al. [10], g) result of Vitoria et al. [11], h) result of automatic Zhang et al. [9], i) result of interactive
Zhang et al. [9].

TABLE 8. PSNR and SSIM of the U and V components of the YUV balloons photograph.
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TABLE 9. Image quality evaluation metrics for the people photograph.

TABLE 10. PSNR and SSIM of the U and V components of the YUV people photograph.

TABLE 11. Time needed for the colorization step of each method
measured in seconds.

Levin et al. [3] and Zhang et al. [9], was notmeasured because
it cannot be done objectively. It is strictly dependent on the
user’s will – how much time someone is ready to dedicate to
the task. Still, Zhang et al. [9] recommend the interaction of
a few seconds to couple minutes.

In conclusion, the results in Table 11 indicate that hard-
ware accelerators and architectural shortcuts of modern deep
learning methods [9]–[11] have notably reduced the time
complexity of the colorization process.

IV. CONCLUSION
The colorization of natural images is a challenging image
processing and computer vision task. It is an ill-posed process
with multimodal uncertainty. The colorization is successful
if the viewer is persuaded in the naturalness of the colorized
image. In this paper, the algorithms with different architec-
tures and level of user guidance have been analyzed taking
into account objective image quality metrics and time needed
for colorization.

The user-guided colorization neural network from
Zhang et al. [9] provides the most visually convincing results
because of the successful combination of human effort and
technology advances regarding neural networks. This fact
was also confirmed by colorfulness, UIQM and UCIQE
objective metrics. However, this colorization method requires
extensive human intervention and vast amount of time.
If user intervention cannot be applied or the processing time

must be lower, the automatic version of Zhang et al. [9]
shows superior results because its neural network archi-
tecture includes separate parts trained for the local fea-
tures (color distribution) and the global features (semantic
information).

More complex architectures, such as GANs in the diverse
category [11], provide plausible results because of better
adaptation to the colorization problem. The architecture uses
more convenient loss function that takes into account color,
perceptual and semantic information. The multi-path col-
orization neural network from Iizuka et al. [6] also indicates
convincing results mainly because of extracting different lev-
els of features. The plain colorization neural network from
Zhang et al. [8] and the exemplar-based colorization neural
network [10] show good results in colorization quality, but
not as good as already discussed methods. The plain col-
orization neural networks do not capture the color character-
istics of different scenes successfully because of their sim-
plicity. The exemplar-based colorization neural network [10]
requires the lowest time for colorization because provid-
ing reference images helps in color transfer to the target
image.

Among the methods requiring the user intervention, the
user-guided colorization neural network achieves better col-
orization than the scribble-based method. The use of neural
networks improves the visual impression.

Multiple objective image quality metrics were applied, but
none of them has demonstrated universality in the qualitative
evaluation of colorization results. The objective image quality
evaluation results frequently did not match the subjective
impression. Colorfulness, UIQM and UCIQE metric often
assign highest values to images with excessively saturated
colors which appear attractive to the human eye. The values of
LPIPS metric almost always coincided with human observa-
tions. UV_PSNR also assigned the highest values to visually
acceptable results.
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It is shown that there is a need for improvement of image
quality metrics that would be able to better assess the col-
orization results according to the characteristics of human
perception.

Existing deep learning colorization methods can be
enhanced by careful selection of training parameters such
as number of layers, number of epochs, and learning rate to
achieve a balance between training time and complexity of
the neural network structure. Further improvement of neural
networks could lead to better understanding of features and
context of images. Separate extraction of local and global fea-
tures contributes to the improvement of the results. Choosing
an appropriate loss function is a big challenge in colorization
problem, because the common loss functions used in existing
neural networks result in unsaturated colors. More adapted
loss functions should take care of a combination of several
different aspects that may affect the final result (e.g., color,
detail, perceptual and semantic information). Future devel-
opment of colorization systems will focus on creating even
more imaginative architectures adapted to the colorization
problem.
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